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ABSTRACT

PIConGPU, Particle In Cell on GPUs, is an open source simulations framework for plasma and
laser-plasma physics used to develop advanced particle accelerators for radiation therapy of cancer, high
energy physics and photon science. While PIConGPU has been optimized for at least 5 years to run well on
NVIDIA GPU-based clusters (1), there has been limited exploration by the development team of potential
scalability bottlenecks using recently updated and new tools including NVIDIA’s NVProf tool and the
brand-new NVIDIA NSight Suite (Systems and Compute) tools.

PIConGPU is a highly optimized application that runs production jobs at scale on a system Oak Ridge
Leadership Facility’s (OLCF) Summit supercomputer (using the full machine at 4600 nodes; at 98% of
GPU utilization on all ∼28000 NVIDIA Volta GPUs). PIConGPU has been selected as one of the the eight
applications for OLCF’s coveted Center for Accelerated Application Readiness (CAAR) program aimed at
the facility’s Frontier supercomputer (OLCF’s first exascale system to launch in 2021), to partner with our
vendors (primary vendors: AMD and Cray/HPE) ensuring that Frontier will be able to perform large-scale
science when it opens to users in 2022 (2).

To this effect, performance engineers on the PIConGPU team wanted to dive deep into the application to
understand at the finest granularity, which portions of the code could be further optimized to exploit the
hardware on Summit at it’s maximum potential and also to elucidate which key kernels should be tracked
and optimized for the CAAR effort to port this code to Frontier. Any bottlenecks that are observed via
performance profiling on Summit are likely to also impact scalability on the Frontier-dev system and the
Frontier Early Access (EA) system. Additionally, the engineers wanted to take a closer look at the newest
NVIDIA profiling tools which allows us to identify the most useful features on these tools and will provide
an opportunity to compare it to new AMD and Cray’s performance analysis tool releases and provide
feedback to our vendor partners on what features are most important and mission critical for CAAR efforts.

Figure 1. A timeline view of PIConGPU, captured using NSight Systems

The primary goal of this report is to focus on the evaluation of PIConGPU’s most time-intensive kernels
using NVProf and NSight Suite.

Three kernels, Current Deposition (also known as Compute Current), Particle Push (Move and Mark), and
Shift Particles are known to be some of the most time-consuming kernels in PIConGPU. The Current
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Deposition kernel and Particle Push kernel both set up the particle attributes for running any physics
simulation with PIConGPU, so it is crucial to improve the performance of these two kernels. In this report,
we measure single GPU metrics for the three kernels, offer high level takeaways from the conducted
analysis, and compare the profiling data from NSight Compute to that of NVProf. This analysis was
performed using a grid size of 240 x 272 x 224, and 10 time steps with the Mid-November Figure of Merit
(FOM) run setup. The Traveling Wave Electron Acceleration (TWEAC) science case used in this run is a
representative science case for PIConGPU. This execution can also be used for baseline analysis on AMD
MI50/ MI60 systems. As of the time of writing, the PIConGPU application has limited use for features of
NSight Systems, so this report will mainly focus on insights garnered from NSight Compute. For this
analysis, we run the “full” metric set available in NSight Compute version 2020.1.2 and use NSight
Systems version 2020.3.1 to generate the application timeline.
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1. HIGH-LEVEL TAKEAWAYS FROM THIS ANALYSIS

1. NVProf showed us several application-level insights on how to possibly tweak PIConGPU for better
performance on Summit.

• Using NSight Compute showed us similar metrics and reinforced that our initial analysis with
NVProf was valid. NVProf profiling has more overhead since it captures a larger number of
metrics by default, but both tools can be used on Summit to do useful analysis within the
available 2 hour runtime limit.

2. NSight Compute in general offers similar functionality to NVProf. Some of the high-level metrics,
such as Speed of Light, are not extremely useful for analyzing a code that has already been
optimized for Summit and NVIDIA GPUs in general.

• Nsight can be run with less overhead by using its more robust customization options with
default metric sets. New metric sets are easy to create and combine for analysis runs. 100
PIConGPU timesteps of profiling can be run with Nsight Compute in a 2 hr time limit
compared to 1 time step with NVProf’s default level profiling.

• Nsight Systems provides aggregate-level statistics for applications but currently has some issues
with separating long C++ templated kernel names that makes it tough to break these statistics
down by kernel. See Section 5. for more details on possible profiling tool enhancements.

3. Comparison of profiles that support AMD hardware to NVIDIA profiles would be much more
insightful than comparing NVProf and Nsight outputs.

• PIConGPU has been optimized for CUDA GPUs for many years so further insights from
CUDA profilers may be limited.

• A useful comparison of profilers that support NVIDIA hardware and AMD hardware would
look at whether the same metrics like shared memory utilization show up as important
predictors for performance with AMD GPUs.

4. Roofline Analysis takeaways

• We also anticipate NVIDIA’s new roofline analysis capability in NSight Compute 2020.1 to be
a useful tool for further analysis of PIConGPU.

2. EXPERIMENTAL SETUP

2.1 Summit

Oak Ridge Leadership Computing Facility’s (OLCF), Summit supercomputer is a 4600 node, 200 PFLOPS
IBM AC922 system *. Each node consists of 2 IBM POWER9 CPUs with 512 GB DDR4 RAM and 6
NVIDIA Volta V100 GPUs with a total of 96 GB high bandwidth memory (divided into 2 sockets), all
connected together with NVIDIA’s high-speed NVLink. For this research we have primarily used our
allocation as a part of the Center for Accelerated Application Readiness (CAAR) program on Summit.

*Summit ranked the second place in the TOP500 list in June 2020 (3)
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2.2 Experiment: The Science

One of the major applications of PIC codes is to simulate laser-driven particle acceleration. With respect to
electrons, the main acceleration mechanism is Laser-Wakefield accelerators. In this simulation, the
experimental setup used is the Traveling Wave Electron Acceleration (TWEAC) simulation. TWEAC aims
to avoid limitations inherent to the Laser-Wakefield Accelerators (LWFA) (namely the dephasing and
depletion limits). The goal of the TWEAC simulation, as stated by Debus et al., is "to create a laser focal
region that moves ideally with exactly the vacuum speed of light and thus faster than the plasma group
velocity" (4). Using LWFA, the laser pulse becomes "exhausted" over time and the "quailty" of
acceleration worsens, thus introducing a limit on how much can be realistically accelerated. Using
TWEAC, this issue is avoided and a longer acceleration takes place because the electrons will always see
an "unexhausted" piece of the laser.

3. MORE DETAILED ANALYSIS OF KERNELS

In this section, we go over the metrics computed by NSight Compute from each of the three measured
kernels, Compute Current, Move And Mark, and Shift Particles in detail.

3.1 COMPUTE CURRENT KERNEL

This kernel contains the back reaction of moving particles to fields. Each particle performs scatter
operations to nearby fields and each thread block processes a super cell. Each CUDA block corresponds to
a super cell. The super cell result, which is three floating point values per cell (including halo cells) is
cached into shared memory using atomic floating point operations. The temporary shared memory data is
then written back to global memory. The numerical scheme the algorithm uses causes warp divergence due
to the particles’ positions relative to the grid. This kernel took up 57.3% of runtime.

3.1.1 Launch Statistics

At launch:

• The size of the kernel grid is 2280

• The block size is 512

• There are 1,167,360 threads

• There are 14.25 waves per Streaming Multiprocessor (SM)

• There are 54 registers per thread

• The Static Shared Memory per block is 18.26 KB/block

• There is no Dynamic Shared Memory per block (0 KB/block)

• The Shared Memory Configuration Size is 65.54 KB

3.1.2 GPU Speed of Light

According to an application analysis done by NSight Compute:
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• "Memory is more heavily utilized than Compute: Check memory replay (coalescing) metrics to
make sure you’re efficiently utilizing the bytes transferred. Also consider whether it is possible to do
more work per memory access (kernel fusion) or whether there are values you can (re)compute."

• The SM Speed of Light (SOL) is 47.21%

– This is also defined as the SM throughput (assuming ideal load balancing across SMSPs)

– For each unit, the Speed Of Light (SOL) reports the achieved percentage of utilization with
respect to the theoretical maximum.

• 66.43% of the theoretical maximum memory was used

Figure 2. GPU Utilization of the Compute Current Kernel

3.2 Kernel Roofline

In the Compute Current kernel, all particle and field data are in single-precision. Due to this, only a
single-precision roofline was generated by NSight Compute.

Figure 3. The Hierarchical Single Floating Point Roofline for the Compute Current Kernel within
PIConGPU. From left to right, the diagonal lines represent the memory boundary for L1, L2, and
DRAM. The purple dot represents the L1 cache achieved value; the orange dot represents the L2
cache achieved value, and the red dot represents the floating point achieved value.

Looking at the chart, we see that L1 cache, L2 cache, and achieved FLOP/s can all be optimized to reach
the compute boundary. There are no issues with this kernel being memory-bound.

3.2.1 Compute Workload Analysis

• The SM was busy 48.99% of the time

• The issue slots were busy 48.99% of the time.
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• The pipe was utilized most by Fused-Multiply-Add (FMA) instructions (39.02%) and least by
Address Unit (ADU) instructions (0.04%). This is shown in Figure 3.

• 1.87 warp instructions were executed per cycle

Figure 4. Pipe Utilization of the Compute Current Kernel

3.2.2 Memory Workload Analysis

• The memory throughput is 51.06 GB/second

• The available communication bandwidth between the SM, caches, and DRAM was 37.32%

– This percentage does not necessarily limit the kernel’s performance

• The maximum throughput of issuing memory instructions reached 39.71%

• Shared Memory Loads had 113,400,037 bank conflicts

• Shared Memory Loads had a peak utilization of 67.13%

• Shared Memory Stores had 0 bank conflicts

• Shared Memory Stores had a peak utilization of 38.25%

3.2.3 Occupancy

• The kernel’s theoretical occupancy is 50%

• The kernel’s achieved occupancy was 49.65%

• The kernel’s theoretical active warps per SM is 32

• The kernel’s active warps per SM was 31.78

• The registers block limit is 2

4



• The shared memory block limit is 5

• The warps block limit is 4

• The SM block limit is 32

Figure 5. Looking at the graph, we see that we will achieve the highest amount of warp occupancy by
decreasing the number of registers per thread to 0 - 31. We can also achieve better performance by
decreasing this number in the range of 32 - 40 registers per thread.

Figure 6. Looking at the graph, we see that increasing the block size from 512 to 576 will increase
the number of warps. Similarly, decreasing the block size from 512 to 384 will also yield better warp
occupancy.

3.2.4 Scheduler Statistics

According to an application analysis done by NSight Compute:

• "Every scheduler is capable of issuing one instruction per cycle, but for this kernel each scheduler
only issues an instruction every 2.0 cycles. This might leave hardware resources underutilized and
may lead to less optimal performance. Out of the maximum of 16 warps per scheduler, this kernel
allocates an average of 7.95 active warps per scheduler, but only an average of 0.76 warps were
eligible per cycle. Eligible warps are the subset of active warps that are ready to issue their next
instruction. Every cycle with no eligible warp results in no instruction being issued and the issue slot
remains unused. To increase the number of eligible warps either increase the number of active warps
or reduce the time the active warps are stalled."

• This kernel achieved 7.95 warps out of a 16 theoretical warps per scheduled time period

• 0.49 warps were eligible per scheduler, but only 0.76 were issued

• 50.97% of the time, 0 warps were eligible to execute

5



Figure 7. From this graph, we can see we are achieving the highest number of warps using 18,336
bytes of Shared Memory per Block.

• Conversely, 49.03% of the time, one or more warps were eligible to execute

3.2.5 Warp State Statistics

According to an application analysis done by NSight Compute:

• "Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput
is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration,
early thread completion, and divergent flow control can significantly lower the number of active
threads in a warp per cycle. This kernel achieves an average of 20.6 threads being active per cycle.
This is further reduced to 18.9 threads per warp due to predication. The compiler may use
predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread
condition code or predicate controls which threads execute the instructions. Try to avoid different
execution paths within a warp when possible. In addition, assure your kernel makes use of
Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent
conditional block by explicitly calling __syncwarp()."

• "On average each warp of this kernel spends 5.1 cycles being stalled waiting for a scoreboard
dependency on an MIO operation (not to TEX or L1). This represents about 31.2% of the total
average of 16.2 cycles between issuing two instructions. The primary reason for a high number of
stalls due to short scoreboards is typically memory operations to shared memory, but other
contributors include frequent execution of special math instructions (e.g. MUFU) or dynamic
branching (e.g. BRX, JMX). Consult the Memory Workload Analysis section to verify if there are
shared memory operations and reduce bank conflicts, if reported."

• 16.21 Warp Cycles occurred per issued instruction

• 20.60 was the Average Number of Active Threads per Warp

– According to NSight Compute, this number is caused by and if that is reduced or eliminated,
this kernel will achieve a more optimal number of threads per warp.

3.3 MOVE AND MARK KERNEL

In this kernel, the momentum and position of a macro particle is updated based on the force calculated
from the electric and magnetic fields. Each thread block processes a super cell. The fields of each super
cell, three floating point values per cell, (including halo cells) is cached into shared memory. Each macro
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particle performs a gather operation to interpolate the field to the position of the particle. Within this
kernel, a particle accesses 64 cells. If a particle leaves a super cell, it is not physically moved, but rather
only marked for removal. This kernel took up 19.0% of the runtime.

3.3.1 Launch Statistics

At launch:

• The size of the kernel grid is 57,120

• The block size is 256

• There are 14,622,720 threads

• There are 238 waves per SM

• There are 64 registers per thread

• The Static Shared Memory per block is 27.66 KB/block

• There is no Dynamic Shared Memory per block (0 KB/block)

• The Shared Memory Configuration Size is 98.30 KB

3.3.2 GPU Speed of Light

According to an application analysis done by NSight Compute:

• "The kernel is utilizing greater than 80.0% of the available compute or memory performance of the
device. To further improve performance, work will likely need to be shifted from the most utilized to
another unit."

• The SM SOL is 44.84%

• 90.93% of the theoretical maximum memory was used

Figure 8. GPU Utilization of the Move and Mark Kernel

3.4 Kernel Roofline

Within the TWEAC simulation, the Move and Mark kernel of PIConGPU utilizes the Vay Pusher, which
needs to perform some double precision operations. At a high level, particle data is loaded in
single-precision, mixed-precision operations are performed while the particle push is occurring. Finally, a
conversion back to single-precision takes place.

The graph shows that the L1 cache, L2 cache, and achieved FLOP/s are more compute-bound than
memory-bound. All achieved values on the graph show that the architectural limit is close to being
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Figure 9. The Hierarchical Single Precision Roofline for the Move And Mark Kernel within PI-
ConGPU. From left to right, the diagonal lines represent the memory boundary for L1, L2, and
DRAM. The purple dot represents the L1 cache achieved value; the orange dot represents the L2
cache achieved value, and the red dot represents the floating point achieved value.

reached. To achieve the maximum compute, minor optimizations need to be made to reach the architectural
maximum of the hardware.

Figure 10. The Hierarchical Double Precision Roofline for the Move And Mark Kernel within PI-
ConGPU. From left to right, the diagonal lines represent the memory boundary for L1, L2, and
DRAM. The purple dot represents the L1 cache achieved value; the orange dot represents the L2
cache achieved value, and the red dot represents the floating point achieved value.

The graph shows that the L2 cache and achieved FLOP/s are more memory-bound than compute-bound.
The L1 cache is more compute-bound. The compute performance of the L1 cache can be optimized to
reach the maximum compute. To achieve the maximum compute within the L2 cache and achieved
FLOP/s, optimizations need to be made to address the memory issues experienced during the Vay pusher
process. After the achieved values become less memory-bound, we can make optimizations to reach the
compute roofline.

3.4.1 Compute Workload Analysis

• The SM is busy 44.90% of the time.

• The issue slots were busy 43.34% of the time.

• The pipe was utilized most by Fused-Multiply-Add (FMA) instructions (44.90%) and least by
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Address Unit (ADU) instructions (0.03%).

• 1.73 warp instructions were executed per cycle.

Figure 11. Pipe Utilization of the Move and Mark Kernel

3.4.2 Memory Workload Analysis

• The memory throughput is 218.53 GB/second

• The available communication bandwidth between the SM, caches, and DRAM was 43.41%

• The maximum throughput of issuing memory instructions reached 43.43%

• Shared Memory Loads had 4,931,034,721 bank conflicts

• Shared Memory Loads had a peak utilization of 87.50%

• Shared Memory Stores had 345,967 bank conflicts

• Shared Memory Stores had a peak utilization of 0.20%

3.4.3 Occupancy

• The kernel’s theoretical occupancy is 37.50%

• The kernel’s achieved occupancy was 37.44%

• The kernel’s theoretical active warps per SM is 24

• The kernel’s active warps per SM was 23.96

• The registers block limit is 4

• The shared memory block limit is 3

• The warps block limit is 8
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• The SM block limit is 32

Figure 12. Looking at the graph, we see that we are achieving the highest amount of warp occupancy
per the number of registers per thread

Figure 13. The graph shows that increasing the block size from 256 to 512 will increase the number
of warps. However, this is tied to the number of cells per supercell/the number of particles in a buffer.
This could be decoupled which could allow us to increase the number of threads per block, thus
increasing the number of warps.

Figure 14. The graph incorrectly shows that this kernel is not using any shared memory.

NSight Compute shows that this kernel does not use shared memory in Figure 14. However, we know this
is not correct. At the time of writing, we are still investigating why NSight Compute thinks this kernel does
not use shared memory.

3.4.4 Scheduler Statistics

According to an application analysis done by NSight Compute:

• "Every scheduler is capable of issuing one instruction per cycle, but for this kernel each scheduler
only issues an instruction every 2.3 cycles. This might leave hardware resources underutilized and
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may lead to less optimal performance. Out of the maximum of 16 warps per scheduler, this kernel
allocates an average of 5.99 active warps per scheduler, but only an average of 1.02 warps were
eligible per cycle. Eligible warps are the subset of active warps that are ready to issue their next
instruction. Every cycle with no eligible warp results in no instruction being issued and the issue slot
remains unused. To increase the number of eligible warps either increase the number of active warps
or reduce the time the active warps are stalled."

• This kernel achieved 5.99 warps out of a theoretical 16 warps scheduled time period

• 1.02 warps were eligible per scheduler, but only 0.43 were issued

• 56.66% of the time, 0 warps were eligible to execute

• Conversely, 43.34% of the time, one or more warps were eligible to execute

3.4.5 Warp State Statistics

According to an application analysis done by NSight Compute:

• "On average each warp of this kernel spends 4.5 cycles being stalled waiting for the MIO instruction
queue to be not full. This represents about 32.9% of the total average of 13.8 cycles between issuing
two instructions. This stall reason is high in cases of extreme utilization of the MIO pipelines, which
include special math instructions, dynamic branches, as well as shared memory instructions."

• 13.82 Warp Cycles occurred per issued instruction

• 31.87 was the Average Number of Active Threads per Warp

3.5 SHIFT PARTICLES KERNEL

In this kernel, the particle storage data structure is updated so that it matches the particles’ new positions
after the push is performed. This kernel took up 11.3% of the runtime.

3.5.1 Launch Statistics

At launch:

• The size of the kernel grid is 2280

• The block size is 256

• There are 583,680 threads

• There are 7.12 waves per SM

• There are 56 registers per thread

• The Static Shared Memory per block is 2.66 KB/block

• There is no Dynamic Shared Memory per block (0 KB/block)

• The Shared Memory Configuration Size is 16.38 KB
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3.5.2 GPU Speed of Light

According to an application analysis done by NSight Compute:

• "This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak
performance of this device. Achieved compute throughput and/or memory bandwidth below 60.0%
of peak typically indicate latency issues."

• The Streaming Multiprocessor (SM) Speed of Light (SOL) is 10.51%

• 14.02% of the theoretical maximum memory was used

Figure 15. GPU Utilization of the Shift Particles Kernel

3.6 Kernel Roofline

There is no roofline for this kernel as it does not execute any FLOP/s. The Shift Particles kernel mainly
copies data around and performs a small number of integer operations.

3.6.1 Compute Workload Analysis

• The SM is busy 11.11% of the time.

• The issue slots were busy 11.11% of the time.

• The pipe was utilized most by Load/Store Unit (LSU) instructions (10.16%) and least by Texture
Memory (TEX) instructions (0.01%).

• 0.40 warp instructions were executed per cycle

3.6.2 Memory Workload Analysis

• The memory throughput is 120.01 GB/second

• The available communication bandwidth between the SM, caches, and DRAM was 14.02%

• The maximum throughput of issuing memory instructions reached 9.61%

• The Shared Memory Loads had 798,480 bank conflicts

• The Shared Memory Loads had a peak utilization of 2.45%

• The Shared Memory Stores had 781,119 bank conflicts

• The Shared Memory Stores had a peak utilization of 0.85%
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Figure 16. Pipe Utilization of the Shift Particles Kernel

3.6.3 Occupancy

• The kernel’s theoretical occupancy is 50%

• The kernel’s achieved occupancy was 47.92%

• The kernel’s theoretical active warps per SM is 32

• The kernel’s active warps per SM was 30.67

• The registers block limit is 4

• The shared memory block limit is 34

• The warps block limit is 8

• The SM block limit is 32

Figure 17. Looking at the graph, we see that decreasing the number of registers per thread will yield
higher warp occupancy. We can achieve the highest amount of warp occupancy by decreasing the
number of registers per thread to no more than 32.

13



Figure 18. Looking at the above graph, we see that increasing the block size from 256 to 288 will
increase the number of warps. Since we are already achieving close to the theoretical max warp
occupancy, this does not seem like a priority.

Figure 19. From the graph, we see that we are achieving the greatest warp occupancy by using 2,656
bytes of shared memory per block. To maintain this high warp occupancy, we should try not to use
more than 24,448 bytes per block.

3.6.4 Scheduler Statistics

According to an application analysis done by NSight Compute:

• "Every scheduler is capable of issuing one instruction per cycle, but for this kernel each scheduler
only issues an instruction every 8.9 cycles. This might leave hardware resources underutilized and
may lead to less optimal performance. Out of the maximum of 16 warps per scheduler, this kernel
allocates an average of 7.71 active warps per scheduler, but only an average of 0.13 warps were
eligible per cycle. Eligible warps are the subset of active warps that are ready to issue their next
instruction. Every cycle with no eligible warp results in no instruction being issued and the issue slot
remains unused. To increase the number of eligible warps either increase the number of active warps
or reduce the time the active warps are stalled."

• This kernel achieved 7.71 warps out of a theoretical 16 warps scheduled time period

• 0.13 warps were eligible per scheduler, and 0.11 were issued

– This shows we executed eligible warps fairly well in this scenario

• 88.83% of the time, 0 warps were eligible to execute

• Conversely, 11.17% of the time, one or more warps were eligible to execute
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3.6.5 Warp State Statistics

According to an application analysis done by NSight Compute:

• "On average each warp of this kernel spends 46.2 cycles being stalled waiting for sibling warps at a
CTA barrier. This represents about 67.0% of the total average of 69.0 cycles between issuing two
instructions. A high number of warps waiting at a barrier is commonly caused by diverging code
paths before a barrier that causes some warps to wait a long time until other warps reach the
synchronization point. Whenever possible try to divide up the work into blocks of uniform
workloads. Use the Source View’s sampling columns to identify which barrier instruction causes the
most stalls and optimize the code executed before that synchronization point first."

• "Instructions are executed in warps, which are groups of 32 threads. Optimal instruction throughput
is achieved if all 32 threads of a warp execute the same instruction. The chosen launch configuration,
early thread completion, and divergent flow control can significantly lower the number of active
threads in a warp per cycle. This kernel achieves an average of 16.9 threads being active per cycle.
This is further reduced to 16.0 threads per warp due to predication. The compiler may use
predication to avoid an actual branch. Instead, all instructions are scheduled, but a per-thread
condition code or predicate controls which threads execute the instructions. Try to avoid different
execution paths within a warp when possible. In addition, assure your kernel makes use of
Independent Thread Scheduling, which allows a warp to reconverge after a data-dependent
conditional block by explicitly calling __syncwarp()."

• 69.00 Warp Cycles occurred per issued instruction

• 16.88 was the Average Number of Active Threads per Warp

– According to NSight Compute, this number is caused by and if that is reduced or eliminated,
this kernel will achieve a more optimal number of threads per warp.

4. NVPROF COMPARISON

Previously, we had generated an analysis report using NVProf. This analysis was performed using a grid
size of 240 x 272 x 224, and 10 time steps on the Mid-November Figure of Merit (FOM) run setup. The
Traveling Wave Electron Acceleration (TWEAC) science case used in this run, is a representative science
case for PIConGPU. This execution can be used for baseline analysis on AMD MI50/ MI60 systems. Our
initial thoughts are that we should see similar, if not the same results for metrics, we saw using NVProf.
We point out similarities and differences found across both applications for the three kernels below.

4.1 SIMILARITIES

Across all kernels, the GPU Utilization percentages and the impact of varying block size figures and
numbers calculated by NVProf and NSight Compute were the same across all kernels. Below we highlight
kernel-specific similarities.

4.1.1 Compute Current Kernel

In the Compute Current kernel, the Occupancy numbers calculated by NVProf and NSight Compute were
identical. Additionally, the impact of varying shared memory usage per block figures and numbers were
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the same.

4.1.2 Move And Mark Kernel

Both NVProf and NSight Compute stated the Move And Mark kernel’s performance is bound by memory
bandwidth. NSight Compute did not explicitly state this ("The kernel is utilizing greater than 80.0% of the
available compute or memory performance of the device."), it seems reasonably clear that this is implied by
looking at the charts for this kernel. The numbers calculated for Occupancy were virtually the same across
applications. We did notice that NVProf rounded these numbers.

4.1.3 Shift Particles Kernel

Both NVProf and NSight Compute stated the Shift Particles Kernel’s performance was bound by
Instruction and Memory Latency.

4.2 DIFFERENCES

The differences we saw between the NVProf analysis and NSight Compute analysis were all
kernel-specific. We go over those differences below.

4.2.1 Compute Current Kernel

NVProf stated the Compute Current kernel’s performance is bound by Instruction and Memory Latency.
NSight Compute did not explicitly mention instruction and memory latency. Regarding memory it did say
to check memory replay (coalescing) metrics and consider whether it is possible to do more work per
memory access (kernel fusion) or whether there are values we can (re)compute.

4.2.2 Move And Mark Kernel

The impact of varying shared memory usage per block graphs were the same, however the amount of warp
occupancy we were achieving per shared memory differed. NVProf stated we were achieving 24 warps at
27,000 Bytes of Shared Memory per block while NSight Compute said we were achieving 32 warps using
0 Bytes of Shared Memory per block.

4.2.3 Shift Particles Kernel

The Occupancy numbers across applications differed slightly. In NVProf, the Achieved Active Warps is
30.59 vs. 30.67 for NSight Compute. The same was seen for Achieved Occupancy where NVProf showed
the Achieved Occupancy as 47.8% vs. 47.92% for NSight Compute. Additionally the impact of varying
shared memory usage per block graphs were the same, however the amount of warp occupancy we were
achieving per shared memory differed. NVProf stated we were achieving 32 warps at 2,000 Bytes of
Shared Memory per block while NSight Compute said we were achieving 32 warps using 0 Bytes of
Shared Memory per block. Finally, NVProf showed that this kernel exhibits low compute throughput and
memory bandwidth utilization relative to the peak performance of this device. Achieved compute
throughput and/or memory bandwidth below 60.0% of peak typically indicate latency issues. However,
NSight Compute did not offer any message similar to this.
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5. POSSIBLE PROFILING TOOL ENHANCEMENTS

From comparing the findings of the profiling reports generated by both applications, we propose the
following as possible enhancements for NSight Compute and NSight Systems.

5.1 NSIGHT COMPUTE

• For the GPU Utilization graphs, break down the utilization percentage by operation (memory,
control-flow, arithmetic, etc.) like NVVP did. Below, we provide an example of what NVProf’s GPU
Utilization graph looked like. The other enhancement we would like to see with NSight Compute is a
way to explicitly navigate to the application’s documentation (5) within the application itself.
Specifically, it would prove helpful to have each metric listed in a given report hyperlink to where it
appears in the documentation or link to a documentation section within NSight Compute. As of the
the time of writing, the documentation can be accessed through the Help menu by selecting either
"Documentation" or "Documentation (Local)". By selecting "Documentation", a web browser will
open the documentation for NSight Compute. If "Documentation (Local)" is selected, an HTML
page containing the NSight Compute documentation is pulled up from the local machine. Currently
it is only possible to view the profiling tool’s documentation via an external source. We think
providing documentation internal to the application would lead to easier analysis of the reports
generated and would help the tool adopt a higher user-base.

5.2 NSIGHT SYSTEMS

For NSight Systems, we propose the following enhancements:

• Within PIConGPU, a typical kernel name has over 10,000 characters and knowing which kernel is
which is crucial for performance analysis. If possible, we want to have the ability for the full name of
the kernel to pop up when hovering over the kernels in the aggregate stream total (All Streams).
Currently, the full name of the kernel is available after expanding the individual streams, but is not
available for the aggregate stream total. There is a workaround for viewing the full kernel name in
under All Streams in the latest version of NSight Systems. We additionally suggest adding an option
where the user can add multiple ‘sed‘ regex rules to describe how to extract a useful kernel name out
of the mangled name.

• For templated kernel instantiations, the ability to limit the call stack trace would be useful. Currently
the entire instantiation trace is listed in the popup which is not that useful.

• Additionally, we want the ability to reset the screen to the default view after fully extending the
kernel names view, or have the kernel names text wrap. Currently, if the kernel names view is fully
extended to the right, there’s no way to view the timeline again without restarting the application.
Finally, we want to be able to infinitely extend the width of the window. Right now, after extending it
so far, the application turns black.
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